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A s  a model of an almost fully extended macromolecule, a small, flexible, inexten- 
sible, nearly straight thread in a shearing flow with weak Brownian motions is 
considered. The hydrodynamic resistance to motion is included using the slender- 
body theory for Stokes flow. The variation of the small transverse displacements 
along the thread is expressed as a truncated sum of Fourier components, with 
appropriately chosen modal functions. A diffusion equation is derived in the 
Fourier space and solved. The expected deformation of the thread is then given 
for axisymmetric and two-dimensional straining flows. The transverse displace- 
ment of the ends and the small shortening of the projected length of the thread 
are both found to be sensitive to the truncation of the Fourier representation, 
although it becomes clear on physical grounds that the ratio of the shortening to 
the typical transverse distortion should increase with the number of degrees of 
freedom. In  simple shear flow the deformation increases as the thread aligns with 
the flow, until the analysis breaks down when the entire thread is no longer in 
the extensional quadrants. The influence of the 2 :  1 ratio of the resistance 
coefficients from the slender-body theory is found to be a small numerical factor. 

1. Introduction 
A flexible nearly straight thread performing weak Brownian motions is 

presented as a model of an almost fully extended polymer molecule. The 
dynamics of the distortion of an isolated long-chain macromolecule by a. bulk 
straining motion are complicated, and simple models help in an understanding 
of the many different features. When Brownian motions are strong, the backbone 
of the polymer executes a random walk with an overall linear dimension much 
smaller than the length along the backbone. As first hinted by Takserman- 
Krozer's (1963) study of the bead-and-spring model in a pure straining flow, the 
random walk is substantially distorted (in almost all flow types, but not including 
simple shear) if the velocity gradient exceeds a critical value proportional to  the 
strength of the Brownian motions. In  supercritical flows the distortion is limited 
by the inextensibility of the backbone, so long as the flow is not so strong that it 
breaks the molecular bonds of the backbone. Studying an inextensible flexible 
thread in a shearing flow, Hinch (1976) concluded that the thread would rapidly 
straighten through a tension induced in it by the flow. Except for the complica- 
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tion of knots inherent in the initial random walk, one is led to speculate that the 
macromolecule will adopt an almost straight configuration when it is in a super- 
critical flow for sufficient time. In  dilute solutions of polymers the transition 
from %he small random coil to the much larger extended configuration could be 
reflected in the solution viscosity changing from a value a few per cent larger 
than that of the solvent to a value several orders of magnitude larger. 

In  this paper an almost fully extended macromolecule is modelled by a nearly 
straight, inextensible, flexible thread. The strength of the flow is allowed to be 
less than in the case of the first inextensible-thread model, so that now Brownian 
motions can no longer be neglected. Weak Brownian motions acting on a straight 
thread will cause small transverse distortions, which can be investigated by 
including a diffusion process in the earlier linear theory of a nearly straight 
thread. The diffusion equation is best tackled in the Fourier space generated by 
the eigensolutions from the earlier linear theory, and its solution yields the r.m.8. 
transverse distortion together with the associated small shortening of the pro- 
jected length of the inextensible thread. These calculations will provide a 
measure of the strength of the flow needed to maintain the polymer in its almost 
fully extended configuration. 

The continuum thread fails to represent the discrete nature of the small but 
finite bond of the polymer backbone. When the Brownian motions are neglected, 
there is little difference between the continuum and the discrete system with 
many degrees of freedom. When the thermal agitations are included, however, 
there is an ultraviolet catastrophe unless the number of degrees of freedom is 
kept finite. To make such a restriction the distortion of the thread is represented 
by a truncated Fourier series. Some results (including the r.m.s. distortion except 
near the ends) will prove to be insensitive to the truncation, while other results 
(including, clearly, those reflecting the total energy of the system) will depend 
critically on the truncation. A careful molecular interpretation of the truncation 
is necessary before any implication of the sensitive results can be given for the 
polymer molecule. 

2. The Fourier space 
This section recalls the relevant results of the earlier paper, Hinch (1976). The 

basic description of the flexible, inextensible, nearly straight thread is given 
together with the evolution of the distortion in a shearing flow with no Brownian 
motions. Brownian motions will be introduced in the following section. The 
linearized motion for the nearly straight thread can be described in terms of some 
eigensolutions which generate a Fourier space to be used later. 

A thin thread of length 2L with a slowly varying cross-section which typically 
has a thickness 2p (p  -g L) is considered. The deformed shape is restricted to have 
curvatures comparable with the length rather than the thickness. Arc length 
along the thread is measured by s, - L < s < L. A suitable kinematic description 
of such a deforming thread is to specify the centre-line of the cross-section. The 
thread is placed in a time-dependent shearing flow with a velocity-gradient tensor 
VU(t). From the slender-body theory (p  6 L )  for Stokes flow (IVUI L2/v < 1) the 
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drag per unit length is in the leading approximation related locally to the slip of 
the undisturbed flow relative to the moving thread. The friction coefficient is 
27rp/ln(2L/p) for motion parallel to the thread and twice this for transverse 
motion. 

The nearly straight thread is taken to be approximately in the direction of the 
rotating unit vector p(t), an orthonormal triad being completed by q(t) and r(t). 
The centre-line of the thread can then be specified as 

P(t) 8 + 4(t) %)(% t )  + r(s, t )  %ds, t ) ,  

with the small distortion x(s, t ) ,  a two-dimensional vector function. A straight 
thread, x = 0, has a tension 

T=-  =p p .  vu. p(L2- 8 2 )  
2LlP 

and rotates according to 

These two results will serve as an adequate approximation for the nearly straight 
thread. It is convenient to choose the rotation of the remainder of the ortho- 
normal triad to be given by 

p = p.vu-p(p.VU.p) .  

q = -p(q.p), i- = -p(r.p).  

The local tangent to the nearly straight thread is 

P + q+, + rx;z), 

where the dashes denote differentiation with respect to the arc length. Using this 
expression for the tangent, the slip of the undisturbed shearing flow relative to 
the moving thread can be resolved into tangential and normal components. 
Written in the two-dimensional space, the normal components of slip are 

x -sx’(p .vu. p) - k. 9.VU.q r.VU.q 
q.VU.r r.VU. r 

v =  ( 
The normal force equation requires that the frictional resistance to this slip 
should balance the tension multiplied by the curvature: 

Substituting the expressions for v and T yields the evolution equation for the 
small distortions. 

The evolution equation for the small distortions can be solved by decomposing 
the distortion into Fourier components. The appropriate modal functions are 

fn(4 = K(s/L)  CL4n 4- 1)1-4 
which have been normalized such that 

L 
f i d s  = 1. 

s-L 
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The modal functions are not orthogonal without a weighting function. They have 

The truncated Fourier decomposition will be taken to run from n = 2 to n = N .  
The n = 1 mode is a translating straight thread and does not enter the deforma- 
tion problem. The fist mode included, n = 2,  is a rotating straight thread and 
this does contribute to the rheology of a suspension of threads. With 

N 

the Fourier amplitudes obey equations 

X, = - A,(t) .x,, 

n2+n-2  (t :) - ( q.VU.q r.VU.q 
4 q.VU.r r.VU. r where A, = p . VU. p 

In  any particular flow VU(t), the equation for the rotation of unit vector p(t) is 
solved first. Then the equations for the remainder of the orthonormal triad can 
be integrated. Finally, with the triad substituted in the expression for A,, the 
amplitude equations can be solved. This procedure was followed in three examples 
given in the earlier paper. 

In  other models of macromolecules in solution the hydrodynamic resistance to 
motion is often poorly treated. A common prescription is to  calculate the drag 
on representative spheres neglecting the hydrodynamic interaction between the 
spheres. For the thread this would lead to friction coefficients of 37rp for parallel 
and transverse slip. The change from the true slender-body theory with the 2 : 1 
ratio of friction coefficients to the isotropic relation produces small detailed 
changes in the above. The modal functions become the self-adjoint Legendre 
functions Pn-,(s/L) [ (2n + 1)/2L]4, n = 2, . . ., N ,  and in the expression for A, the 
factor $(na + n - 2 )  is replaced by 3(na - n). 

3. The diffusion equation 
The Brownian motions are now introduced via a diffusion process in the 

Fourier space. When there are Brownian motions the distortion of the thread 
must be described statistically. Let Y (x2, . . . , xN; t )  be the probability distribution 
function of the Fourier amplitudes. The probability distribution satisfies the 
conservation equation 

ayP N a -+ -.(YX,) = 0, 
at ,= ax, 

where the velocity components 2, include, in addition to the straightening term 
from the shearing flow derived in the last section, a term representing the 
migrational motion from the diffusion. 

The migrational motion can be derived by considering the chemical potential 
kT ln Y. In  a small change in the configuration (SX,) ,  the change in the chemical 
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potential will be equal to the work done against a transverse entropic force F(s) 
distributed along the thread: 

L 

The entropic force is therefore 

The migrational motion which this force drives can then be calculated using the 
transverse friction coefficients. The contribution to the velocity component kn 
from the diffusion is thus 

where 

This result does not depend on the form of the modal functions. The alternative 
isotropic friction law would thus have produced the last expression multiplied 
by the factor 4/3h (2Llp).  

Bringing together the two contributions to the velocity 5, and substituting 
into the probability conservation equation produces the diffusion equation 

This diffusion equation with a linear advection field is solved by a time-dependent 
Gaussian distribution 

where the variances 

Bnm(t) = (x,x,) = x,x,Y d2x2 ... d2XN s 
satisfy the following equation for each n and m: 

B n m + A n .  Barn+ B n m . G  = Dam 1. 

This is the fundamental result of the paper. I ts  implications are explored for 
particular flows in the next section. 

4. Results 
Axisymmetric straining motion 

The first particular flow to be considered is steady axisymmetric straining motion 
which has a velocity-gradient tensor 

49 
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FIGURE 1. The r.m.8. distortion in axisymmetric flow. The units of (s2(s))* are 
(kT In (2L/p)/n,uEL)* for the 2 :  1 slender-body theory (solid curve) and (4kT/3n,uEL)a for 
the 1 : 1 isotropic friction (dashed curve). 

A straight thread quickly aligns in the direction of stretching, so the orthonormal 
triad is chosen to coincide with the co-ordinate axes, i.e. p = ( 1 ,  0, 0 ) ,  g = ( 0 , 1 , 0 )  
and r = (0, 0, 1 ) .  Now the stretching matrices A, can be evaluated and substi- 
tuted into the equation for the variances. The steady solution for the variances is 

/ - ( 2 n + 3 ) - l  for m = n + 2 ,  

Using this result several properties of the distorted thread can be studied. 
The r.m.s. distortion as a function of position along the thread is 

where the curly bracket containing m and n is the same as in the preceding 
expression for the variances. The sum converges as N-tm except a t  the ends 
s = &L. Within a small region near the ends, 1 -  Isl/L = O(N-2) ,  the sum 
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behaves asymptotically like TlgN[l- gN2( 1 - lsl/L) + ...I. The r.m.s. distortion 
with the converged sum is plotted against arc length in figure 1. There is less 
distortion in the centre because the tension is larger there and this straightens 
the fluctuating distortions faster. At the ends, where the tension vanishes, the 
distortion is O(N*) larger. The r.m.s. integral distortion is 

The analysis for the nearly straight thread requires that the distortions, their 
tangents and their curvatures should all be small. The distortions can be kept 
small if the non-dimensional group kTln (2L/p)/pEL3 is made small. 

In  addition to the r.m.8. distortion for the true slender-body theory, also 
plotted in figure 1 is the r.m.s. distortion for the alternative friction law. The 
integral distortion is 1*5[ln (2L/p)]-4 smaller for the alternative law, although 
this is merely a factor of 0.53 for L / p  = lo3 and 0.38 for Llp = lo6. Compared 
with the distortions for the alternative form, those for the true slender-body 
theory are slightly narrower. 

When the inextensible thread is distorted by a small amount O(x) ,  the projec- 
tion of the thread in the main p direction must be slightly reduced from 2L by 
O(x2/L). This shortening is important in the rheology of a suspension of the 
threads. For an inextensible thread, the derivative with respect to s of the 
position of the thread should remain the local unit tangent as the thread distorts. 
The derivative given in the second section of the paper was not of unit length, 
but had an O(x2/L2) error. Correcting this error up to an accuracy of O(x4/L4), 
the unit tangent is 

The total shortening of the thread in the p direction is thus seen to be 

p(s - 4 ~ ’ ~ )  + qx;,, + r ~ ; ~ , .  

the neglected terms giving an error of less than 1 yo when N > 10. The shortening 
diverges as the number of modes is increased. The leading-order [O(N3)]  contribu- 
tion to the shortening comes from the small end regions O(iV-2~5). 

Now the truncated Fourier series was introduced to represent the finite number 
of bonds along the backbone of the polymer molecule. As all the bonds are 
roughly the same size, the shortest length to be resolved is 2L/N. Thus the contri- 
butions from the smaller-scale end regions, O(LN-2), should be ignored. When at  
large n the end contributions to the integrals from Pk2-, and P;tI are ignored, the 
shortening is predicted as O(N) ,  although the precise value depends on how the 
end contributions are ignored. Ignoring the end contributions to the normaliza- 
tion integrals does not affect the results for the r.m.s. distortion, except near 
the ends. 

In  order that the analysis for a nearly straight thread should be valid, the 
shortening must be kept small. Thus the non-dimensional group must be further 
restricted such that kT In (2L/p)/pEL3 < N 3  or, when ignoring the end regions, 
< N .  Within this limitation, however, it is clear that the shortening can be larger 

49-2 
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than the distortions when the number of degrees of freedom 2N - 2 becomes 
large. Essentially each degree of freedom brings an amount +kT of stored 
potential energy. I n  the stretched thread the potential energy is mainly stored 
as the shortening weighted by the tension: 

( /:LT.'2d.> = @T[2.5N-3lnN- 1 +O(N-l ) ] .  

A small amount of energy is also stored by the transverse displacement against 
the adverse inward flow. As the weighted shortening increases with the number 
of degrees of freedom, so also does the unweighted shortening. When the 
unrealistic contributions from the end regions, where the tension is vanishing, are 
included, the unweighted shortening increases more rapidly. 

The final property of the thread to be evaluated is its r.m.8. curvature, which 
must be kept small for the application of the slender-body theory. The integral 
r.m.s. distortion is 

the neglected terms giving an error of less than 3 %  when N > 10. As in the 
shortening problem, the dominant contributions to the integrals at large n come 
from small [O(Ln-2)] end regions. If these regions are excluded the leading-order 
term in the integral r.m.s. curvature becomes O(N3) rather than O(Nf), although 
the precise value depends on how the end regions are ignored. The requirement 
for the slender-body theory that the curvature be not too large thus further 
restricts the non-dimensional group such that kTln (2L/p)/pEL3 < N' or, when 
the end effects are ignored, < N3. 

The use of the alternative friction law instead of the true slender-body theory 
does not drastically change the predictions of the properties of the macro- 
molecule. Ignoring the end regions, the shortening is O(NkT/pEL2) and the 
integral r.m.s. curvature is O[(N3kT/pELs)*]. When the end effects are included, 
the N in the shortening becomes N 2  and the N S  in the curvature becomes N8, 
which are both an order of magnitude smaller than with the correct friction. 

As the estimates of the shortening and the curvature of a macromolecule 
depend critically on the crude representation by the continuum thread of the 
finite number of bonds, a study of the more representative discrete version of the 
theory would be useful. In  such a study the restriction on the curvature could be 
lifted by using the Oseen hydrodynamic interaction between the bonds. 

Two-dimensional straining motion 
A stretching flow similar to axisymmetric straining motion is the two-dimensional 
flow 

In this flow a straight thread would quickly align in the stretching direction, so 
as in the preceding case the orthonormal triad is chosen to coincide with the 
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FIUURE 2. The r.m.8. distortion in the compression direction (i = 1) and the no-flow 
direction (i = 2) in two-dimensional straining motion. 

co-ordinate axes, i.e. p = (1, 0, O ) ,  q = (0, 1, 0) and r = (0, 0, 1). The steady 
solution for the variances of the Fourier amplitudes is, with the same curly 
bracket as before, 

7cT In ( 2 L / p )  (na + n  + m2 + m + 4)-l 0 

W E  0 n2 + n + ma + m - 4)- (Xn Xm> = 

In the i = 2 or r direction there is only the tension straightening the distortions, 
while in the i = 1 or q direction the compressional inflow also reduces the dis- 
tortions. Thus the thread is slighly thinner in the q direction compared with the 
r direction. This difference in thickness in the two directions can be seen in 
figure 2, in which the r.m.8. distortion is plotted as a function of posit,ion along 
the thread. The largest contributor to  the difference is the n = 2 rotating straight 
thread mode, which explains why the difference is greatest at the ends of the 
thread. The r.m.8. distortion has a singularity at the ends very similar to the 
axisymmetric case, with the end displacement being proportional to N ) .  The 
integral r.m.8. distortion is 

The orders of magnitude of the shortening and curvature for this flow are the 
same as for the axisymmetric straining motion. 
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Simple shear $ow 

The bead-and-spring models of randomly coiled macromolecules suggest that 
there may be no critical flow phenomenon in simple shear flow, 

v u = y  0 0 0 .  (1 1 1) 
Thus if the macromolecule is subjected only to simple shear of arbitrary magni- 
tude it will probably not be greatly extended. Therefore, when the model pre- 
sented in this paper is applied to simple shear it is imagined that the simple shear 
follows a different flow which can nearly fully extend the macromolecule, e.g. the 
flow down a pipe after a convergence at the entrance. As the initial configuration 
is determined by the preceding flow conditions, which are not under examination, 
an arbitrary initial configuration must be used. 

The motion of a thread without Brownian motions was discussed in the earlier 
paper (Hinch 1976), using the rotating orthonormal triad 

p ( t )  = (y t ,  1 , C) [ 1 + c2 + y2t21-4 

q(t) = ( -1 -C2 ,  y t ,  Cyt)[( l+C2)( l+C2+y2t2)]-~,  

r(t) = (0, - C, 1 )  [ I  +C2]-t, 

where C is a constant depending on the initial conditions. With this triad substi- 
tuted in the expression for A,, the time-dependent solution for the variances 
(xn, x,) can be found starting from arbitrary initial conditions. As this solution 
is complex in detail, only the long-time asymptotic behaviour, which is simpler 
and sufficient for the discussion, is given. For y2t2 1+C2 and with 
M = n2+n+rn2+m, 

-- 
(Xnxrn) N t 2 4c 1 

J ! ( M  + 4) 

with an error o ( ( ~ t ) - ~ )  smaller in each of the four terms. The coefficients a, band c 
in the last three terms are related to the initial conditions. The asymptotics given 
show that, while the initial distortion decays rapidly as if there were no Brownian 
motions, there is a term in the variance growing linearly in time which is due to 
the Brownian motion. This growing part leads to a growth in the r.m.s. distortion 

O[L(tkTln (2L/p) p-1~-3)+]  

and a growth in the shortening 

O[LN(tkT In ( ~ L / ~ ) , u - ~ L - ~ ) ]  
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ignoring the end regions. The form of the growing part of the variances can be 
explained by considering the decrease in the tension of the thread, 

O(pL2/1n W l P )  t ) ,  

as the thread aligns with the flow direction. Equating the order of magnitude of 
the stored potential energy in the nth mode, i.e. the product of the above tension 
and the shortening from the nth mode, O( (xz) n2/L2) ignoring end effects, to the 
thermal activity kT yields an estimate for the variances O(kT In (2L/p) t,u%r2). 
This argument must be contrasted with one in which the decreasing tension is 
neglected and the variances are assumed to grow only under the influence of the 
Brownian motions. Such an argument also yields variances growing linearly in 
time, but with the constant of proportionality k T  In (2L/p)  p-l now being inde- 
pendent of the mode. Such a growth in the variances yields a growth in the r.m.8. 
distortion O[LNQl(tkT In (2L/p) ,K~L-~)*] and a growth in the shortening 
O[LN3(tkT In (2L /p )  p-l L-3)] ignoring the end regions. 

As the thread aligns with the flow its thickness grows. At some time the thick- 
ness must be comparable with the angle p(t) makes with the direction of the flow. 
A little before this time, the theory presented in this paper must break down 
because some terms of second order in the near-straightness become important; 
see the crossing problem discussed in the earlier paper. The angle between the 
direction of the flow and the thread is l/yt as yt-tco. The r.m.s. distortion 
growing owing to the Brownian motions is O[(tkT In (2L/p)p-lL-l)*] at most 
positions along the thread and iV4 larger at the ends. Taking for the thickness this 
larger distortion at  the end, the theory is valid only while 

This study was made while the author was a guest at  the Division of Mechanics, 
Royal Institute of Technology, Stockholm, Sweden. 
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